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Abstract. The problem Minimum Convex Cover of covering a given
polygon with a minimum number of (possibly overlapping) convex poly-
gons is known to be NP -hard, even for polygons without holes [3]. We
propose a polynomial-time approximation algorithm for this problem for
polygons with or without holes that achieves an approximation ratio of
O(log n), where n is the number of vertices in the input polygon. To
obtain this result, we first show that an optimum solution of a restricted
version of this problem, where the vertices of the convex polygons may
only lie on a certain grid, contains at most three times as many con-
vex polygons as the optimum solution of the unrestricted problem. As a
second step, we use dynamic programming to obtain a convex polygon
which is maximum with respect to the number of “basic triangles” that
are not yet covered by another convex polygon. We obtain a solution that
is at most a logarithmic factor off the optimum by iteratively applying
our dynamic programming algorithm. Furthermore, we show that Min-
imum Convex Cover is APX-hard, i.e., there exists a constant δ > 0
such that no polynomial-time algorithm can achieve an approximation
ratio of 1 + δ. We obtain this result by analyzing and slightly modifying
an already existing reduction [3].

1 Introduction and Problem Definition

The problem Minimum Convex Cover is the problem of covering a given
polygon T with a minimum number of (possibly overlapping) convex polygons
that lie in T . This problem belongs to the family of classic art gallery problems;
it is known to be NP -hard for input polygons with holes [14] and without holes
[3]. The study of approximations for hard art gallery problems has rarely led to
good algorithms or good lower bounds; we discuss a few exceptions below. In this
paper, we propose the first non-trivial approximation algorithm for Minimum
Convex Cover. Our algorithm works for both, polygons with and without
holes. It relies on a strong relationship between the continuous, original problem
version and a particular discrete version in which all relevant points are restricted
to lie on a kind of grid that we call a quasi-grid. The quasi-grid is the set of
intersection points of all lines connecting two vertices of the input polygon.
Now, in the Restricted Minimum Convex Cover problem, the vertices of

F. Meyer auf der Heide (Ed.): ESA 2001, LNCS 2161, pp. 333–344, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



334 S. Eidenbenz and P. Widmayer

the convex polygons that cover the input polygon may only lie on the quasi-grid.
We prove that an optimum solution of the Restricted Minimum Convex
Cover problem needs at most three times the number of convex polygons that
the Minimum Convex Cover solution needs. To find an optimum solution
for the Restricted Minimum Convex Cover problem, we propose a greedy
approach: We compute one convex polygon of the solution after the other, and we
pick as the next convex polygon one that covers a maximum number of triangles
defined on an even finer quasi-grid, where these triangles are not yet covered by
previously chosen convex polygons. We propose an algorithm for finding such
a maximum convex polygon by means of dynamic programming. To obtain an
upper bound on the quality of the solution, we interpret our covering problem
on triangles as a special case of the general Minimum Set Cover problem that
gives as input a base set of elements and a collection of subsets of the base set, and
that asks for a smallest number of subsets in the collection whose union contains
all elements of the base set. In our special case, each triangle is an element,
and each possible convex polygon is a possible subset in the collection, but not
all of these subsets are represented explicitly (there could be an exponential
number of subsets). This construction translates the logarithmic quality of the
approximation from Minimum Set Cover to Minimum Convex Cover [10].

On the negative side, we show that Minimum Convex Cover is APX-hard,
i.e., there exists a constant δ > 0 such that no polynomial-time algorithm can
achieve an approximation ratio of 1 + δ. This inapproximability result is based
on a known problem transformation [3]; we modify this transformation slightly
and show that it is gap-preserving (as defined in [1]).

As for previous work, the related problem of partitioning a given polygon
into a minimum number of non-overlapping convex polygons is polynomially
solvable for input polygons without holes [2]; it is NP -hard for input poly-
gons with holes [12], even if the convex partition must be created by cuts from
a given family of (at least three) directions [13]. Other related results for art
gallery problems include approximation algorithms with logarithmic approxi-
mation ratios for Minimum Vertex Guard and Minimum Edge Guard [8],
as well as for the problem of covering a polygon with rectangles in any orientation
[9]. Furthermore, logarithmic inapproximability results are known for Minimum
Point/Vertex/Edge Guard for polygons with holes [5], and APX-hardness
results for the same problems for polygons without holes [6]. The related prob-
lem Rectangle Cover of covering a given orthogonal polygon with a minimum
number of rectangles can be approximated with a constant ratio for polygons
without holes [7] and with an approximation ratio of O(

√
log n) for polygons

with holes [11]. For additional results see the surveys on art galleries [15,16].
The general idea of using dynamic programming to find maximum convex struc-
tures has been used before to solve the problem of finding a maximum (with
respect to the number of vertices) empty convex polygon, given a set of vertices
in the plane [4], and for the problem of covering a polygon with rectangles in
any orientation [9].

This paper is organized as follows: In Sect. 2, we define the quasi-grid and its
refinement into triangles. Section 3 contains the proof of the linear relationship
between the sizes of the optimum solutions of the unrestricted and restricted
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Fig. 1. Construction of first-order basic triangles

convex cover problems. We propose a dynamic programming algorithm to find a
maximum convex polygon in Sect. 4, before showing how to iteratively apply this
algorithm to find a convex cover in Sect. 5. In Sect. 6, we present the outline of
our proof of the APX-hardness of Minimum Convex Cover. A few concluding
remarks can be found in Sect. 7.

2 From the Continuous to the Discrete

Consider simple input polygons with and without holes, where a polygon T is
given as an ordered list of vertices in the plane. If T contains holes, each hole
is also given as an ordered list of vertices. Let VT denote the set of vertices
(including the vertices of holes, if any) of a given polygon T . While, in the
general Minimum Convex Cover problem, the vertices of the convex polygons
that cover the input polygon can be positioned anywhere in the interior or on
the boundary of the input polygon, we restrict their positions in an intermediate
step: They may only be positioned on a quasi-grid in the Restricted Minimum
Convex Cover problem.

In order to define the Restricted Minimum Convex Cover problem more
precisely, we partition the interior of a polygon T into convex components (as
proposed in [8] for a different purpose) by drawing a line through each pair of
vertices of T . We then triangulate each convex component arbitrarily. We call the
triangles thus obtained first-order basic triangles. Figure 1 shows in an example
the first-order basic triangles of a polygon (thick solid lines) with an arbitrary
triangulation (fine solid lines and dashed lines). If a polygon T consists of n
vertices, drawing a line through each pair of vertices of T will yield less than(
n
2

) · (
n
2

) ∈ O(n4) intersection points. Let V 1
T be the set of these intersection

points that lie in T (in the interior or on the boundary). Note that VT ⊆ V 1
T .

The first-order basic triangles are a triangulation of V 1
T inside T , therefore the

number of first-order basic triangles is also O(n4). The Restricted Minimum
Convex Cover problem asks for a minimum number of convex polygons, with
vertices restricted to V 1

T , that together cover the input polygon T . We call V 1
T a

quasi-grid that is imposed on T . For solving the Restricted Minimum Con-
vex Cover problem, we make use of a finer quasi-grid: Simply partition T by
drawing lines through each pair of points from V 1

T . This yields again convex
components, and we triangulate them again arbitrarily. This higher resolution
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partition yields O(n16) intersection points, which define the set V 2
T . We call

the resulting triangles second-order basic triangles. Obviously, there are O(n16)
second-order basic triangles. Note that VT ⊆ V 1

T ⊆ V 2
T .

3 The Optimum Solution of Minimum Convex Cover vs.
the Optimum Solution of Restricted Minimum Convex
Cover

The quasi-grids V 1
T and V 2

T serve the purpose of making a convex cover com-
putationally efficient while at the same time guaranteeing that the cover on the
discrete quasi-grid is not much worse than the desired cover in continuous space.
The following theorem proves the latter.

Theorem 1. Let T be an arbitrary simple input polygon with n vertices. Let
OPT denote the size of an optimum solution of Minimum Convex Cover
with input polygon T and let OPT ′ denote the size of an optimum solution of
Restricted Minimum Convex Cover with input polygon T . Then:

OPT ′ ≤ 3 · OPT

Proof. We proceed as follows: We show how to expand a given, arbitrary convex
polygon C to another convex polygon C ′ with C ⊆ C ′ by iteratively expanding
edges. We then replace the vertices in C ′ by vertices from V 1

T , which results in
a (possibly) non-convex polygon C ′′ with C ′ ⊆ C ′′. Finally, we describe how to
obtain three convex polygons C ′′

1 , C ′′
2 , C ′′

3 with C ′′ = C ′′
1 ∪ C ′′

2 ∪ C ′′
3 that only

contain vertices from V 1
T . This will complete the proof, since each convex polygon

from an optimum solution of Minimum Convex Cover can be replaced by at
most 3 convex polygons that are in a solution of Restricted Minimum Convex
Cover. Following this outline, let us present the proof details.

Let C be an arbitrary convex polygon inside polygon T . Let the vertices
of C be given in in clockwise order. We obtain a series of convex polygons
C1, C2, . . . , C′ with C = C0 ⊆ C1 ⊆ C2 ⊆ . . . ⊆ C ′, where Ci+1 is obtained
from Ci as follows (see Fig. 2):

Let a, b, c, d be consecutive vertices (in clockwise order) in the convex polygon
Ci that lies inside polygon T . Let vertices b, c /∈ VT , with b and c not on the
same edge of T . Then, the edge (b, c) is called expandable. If there exists no
expandable edge in Ci, then C ′ = Ci, which means we have found the end of
the series of convex polygons. If (b, c) is an expandable edge, we expand the edge
from vertex b to vertex c as follows:

– If b does not lie on the boundary of T , then we let a point p start on b
and move on the halfline through a and b away from b until either one of
two events happens: p lies on the line through c and d, or the triangle p, c, b
touches the boundary of T . Fix p as soon as the first of these events happens.
Figure 2 shows a list of all possible cases, where the edges from polygon T
are drawn as thick edges: Point p either lies on the intersection point of the
lines from a through b and from c through d as in case (a), or there is a
vertex vl on the line segment from p to c as in case (b), or p lies on an edge
of T as in case (c).
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Fig. 2. Expansion of edge (b,c)

– If b lies on the boundary of T , i.e. on some edge of T , say from vk to vk+1,
then let p move as before, except that the direction of the move is now on
the way from vk through b up until vk+1 at most (instead of the ray from a
through b).
Figure 2 shows a list of all possible cases: Point p either lies at vertex vk+1
as in case (d), or on the intersection point of the lines from b to vk+1 and
from d through c as in case (e), or there is a vertex vl on the line segment
from p to c as in case (f).

A new convex polygon Ci
p is obtained by simply adding point p as a vertex in

the ordered set of vertices of Ci between the two vertices b and c. Furthermore,
eliminate all vertices in Ci

p that have collinear neighbors and that are not vertices
in VT .

Note that an edge from two consecutive vertices b and c with b, c /∈ VT can
always be expanded in such a way that the triangle b, p, c that is added to the
convex polygon is non-degenerate, i.e., has non-zero area, unless b and c both lie
on the same edge of polygon T . This follows from the cases (a) - (f) of Fig. 2.

Now, let Ci+1 = Ci
p, if either a new vertex of T has been added to Ci

p in the
expansion of the edge, which is true in cases (b), (d), and (f), or the number of
vertices of Ci

p that are not vertices of T has decreased, which is true in case (a).
If p is as in case (c), we expand the edge (p, c), which will result in either case
(d), (e), or (f). Note that in cases (d) and (f), we have found Ci+1. If p is as in
case (e), we expand the edge (p, d), which will result in either case (d), (e), or (f).
If it is case (e) again, we repeat the procedure by expanding the edge from p and
the successor (clockwise) of d. This needs to be done at most |Ci| times, since
the procedure will definitely stop once it gets to vertex a. Therefore, we obtain
Ci+1 from Ci in a finite number of steps. Let τi denote the number of vertices in
Ci that are also vertices in T and let τ̂i be the number of vertices in Ci that are
not vertices in T . Now note that φ(i) = τ̂i − 2τi + 2n is a function that bounds
the number of remaining steps, i.e., it strictly decreases with every increase in
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Fig. 3. Replacing non-T -vertices

i and cannot become negative. The existence of this bounding function implies
the finiteness of the series C1, C2, . . . , C′ of convex polygons.

By definition, there are no expandable edges left in C ′. Call a vertex of C ′

a T -vertex, if it is a vertex in T . From the definition of expandable edges, it is
clear that there can be at most two non-T -vertices between any two consecutive
T -vertices in C ′, and if there are two non-T -vertices between two consecutive
T -vertices, they must both lie on the same edge in T . Let the T -vertices in C ′ be
t1, . . . , tl in clockwise order, and let the non-T -vertices between ti and ti+1 be
nti,1 and nti,2 if they exist. We now replace each non-T -vertex nti,j in C ′ by one
or two vertices nt1i,j and nt2i,j that are both elements of V 1

T . This will transform
the convex polygon C ′ into a non-convex polygon C ′′ (we will show later how
C ′′ can be covered by at most three convex polygons C ′′

1 , C ′′
2 , C ′′

3 ).
To this end, let a, b, c be the first-order basic triangle in which non-T -vertex

nti,j lies, as illustrated in Fig. 3. Points a, b, c are all visible from both vertices
ti and ti+1. To see this, assume by contradiction that the view from, say, ti to
a is blocked by an edge e of T . Since nti,j must see ti, the edge e must contain
a vertex e′ in the triangle ti, a, nti,j , but then a cannot be a vertex of the first-
order basic triangle in which nti,j lies, since the line from vertex ti through
vertex e′ would cut through the first-order basic triangle, an impossibility. Now,
let di be the intersection point of the line from ti−1 through ti and the line from
ti+1 through ti+2. With similar arguments, the triangle ti, di, ti+1 completely
contains triangle a, b, c.

Assume that only one non-T -vertex nti,1 exists between ti and ti+1. If the
triangle formed by ti, ti+1 and a completely contains the triangle ti, nti,1, ti+1, we
let nt1i,1 = a, likewise for b and c (see Fig. 3 (b)). Otherwise, we let (nt1i,1, nt2i,1) be
(a, b), (a, c), or (b, c) as in Fig. 3 (a), such that the polygon ti, nt1i,1, nt2i,1, ti+1 is
convex and completely contains the triangle ti, nti,1, ti+1. This is always possible
by the definition of points a, b, c.

Now, assume that two non-T -vertices nti,1 and nti,2 exist between ti and
ti+1. From the definition of C ′, we know that nti,1 and nti,2 must lie on the
same edge e of T . Therefore, the basic triangle in which nti,1 lies must contain a
vertex a either at nti,1 or preceeding nti,1 on edge e along T in clockwise order.

Let nt1i,1 = a. The basic triangle in which nti,2 lies must contain a vertex
b either at nti,2 or succeeding nti,2 on edge e. Let nt1i,2 = b. See Fig. 3 (c).
Note that the convex polygon ti, nt1i,1, nt1i,2, ti+1 completely contains the polygon
ti, nti,1, nti,2, ti+1.
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Fig. 4. Covering C′′ with three convex polygons
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Fig. 5. Dynamic Programming

After applying this change to all non-T -vertices in C ′, we obtain a (possibly)
non-convex polygon C ′′. First, assume that C ′′ contains an odd number f of
T -vertices. We let C ′′

1 be the polygon defined by vertices ti, ntki,j and ti+1 for all
j, k and for all odd i, but i 6= f . By construction, C ′′

1 is convex. Let C ′′
2 be the

polygon defined by vertices ti, ntki,j and ti+1 for all j, k and for all even i. Finally,
let C ′′

3 be the polygon defined by vertices tf , ntkf,j and t1 for all j, k. Figure 4
shows an example. Obviously, C ′′

1 , C ′′
2 , and C ′′

3 are convex and together cover
all of C ′′. Second, assume that C ′′ contains an even number of T -vertices, and
cover it with only two convex polygons using the same concept. This completes
the proof.

4 Finding Maximum Convex Polygons

Assume that each second-order basic triangle from a polygon T is assigned a
weight value of either 1 or 0. In this section, we present an algorithm using
dynamic programming that computes the convex polygon M in a polygon T
that contains a maximum number of second-order basic triangles with weight
1 and that only has vertices from V 1

T . For simplicity, we call such a polygon a
maximum convex polygon. The weight of a polygon M is defined as the sum of
the weights of the second-order basic triangles in the polygon and is denoted by
|M |. We will later use the algorithm described below to iteratively compute a
maximum convex polygon with respect to the triangles that are not yet covered,
to eventually obtain a convex cover for T .

Let a, b, c ∈ V 1
T . Let Pa,b,c denote the maximum convex polygon that:

– contains only vertices from V 1
T , and

– contains vertices a, b, c in counterclockwise order, and
– has a as its left-most vertex, and
– contains additional vertices only between vertices a and b.

Given three vertices a, b, c ∈ V 1
T , let A be the (possibly infinite) area of points

that are:
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– to the right of vertex a, and
– to the left of the line oriented from b through a, and
– to the left of the line oriented from b through c.

For an illustration, see Fig. 5. Let P ′
a,b,c = maxd∈V 1

T
∩A Pa,d,b ∪ ∆a, b, c, where

max is defined as follows (to simplify notation):

max{P1, P2} =
{

P1 if |P1| ≥ |P2|
P2 otherwise .

Lemma 1. Pa,b,c = P ′
a,b,c, if the triangle a, b, c is completely contained in the

polygon T .

Proof. Consider Pa,b,c, which is maximum by definition. Pa,b,c must contain ad-
ditional vertices between a and b (otherwise the lemma is trivially true). Let d′

be the predecessor of b in the counterclockwise order of Pa,b,c. Vertex d′ must
lie in area A as defined above, otherwise the polygon a, d′, b, c would either be
non-convex, not have a as its left-most vertex, or not be in the required coun-
terclockwise order. Now consider P ′′ = Pa,b,c − ∆a, b, c. From the definition of
area A it is clear the P ′′ can only contain vertices that lie in A. Now Pa,d′,b is
maximum by definition, and it is considered when computing P ′

a,b,c.

Let M be a maximum convex polygon for a polygon T with weights assigned
to the second-order basic triangles. Let a be the left-most vertex of M , let c be
the predecessor of a in M in counter clockwise order, and let b be the predecessor
of c. Then |Pa,b,c| = |M | by definition.

We will now use Lemma 1 to construct an algorithm, which takes as input
a polygon T and an assignment of weight 0 or 1 to each second-order basic
triangle of T and computes the maximum convex polygon. To this end, we
fix vertex a ∈ V 1

T . Let a′ be a point with the same x-coordinate and smaller
y-coordinate than a. Now, order all other vertices b ∈ V 1

T to the right of a
according to the angle formed by b, a, a′. Let the resulting ordered set be B and
let B′ be the empty set. Take the smallest element b from B, remove it from
B and add it to set B′, then for all c ∈ V 1

T \B′ and to the right of a, compute
weight |∆a, b, c| of the triangle a, b, c and compute Pa,b,c according to Lemma 1.
Compute weight |Pa,b,c| by adding |∆a, b, c| to |Pa,d,b|, where d is the maximizing
argument. Note that the computation of Pa,b,c according to Lemma 1 is always
possible, since all possible vertices d in Pa,d,b lie to the left of the line from b to
a (see also definition of area A) and have therefore smaller angles d, a, a′ than
b, a, a′, and have therefore already been computed. The algorithm is executed
for every a ∈ V 1

T , and the maximum convex polygon found is returned.
Note that |T | = n, |V 1

T | = O(n4), and |V 2
T | = O(n16). Ordering O(n4) vertices

takes O(n4 log n) time. Computing the weight of a triangle takes O(n16) time.
Computing Pa,b,c takes O(n4) time. We have to compute the weight of O(n8)
triangles, which gives a total time of O(n24). Finally, we have to execute our
algorithm for each a ∈ V 1

T , which gives a total running time of O(n28). Space
requirements are O(n12) by using pointers.
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5 An Approximation Algorithm for Minimum Convex
Cover

Given a polygon T , we obtain a convex cover by iteratively applying the al-
gorithm for computing a maximum convex polygon from Sect. 4. It works as
follows for an input polygon T .

1. Let all second-order basic triangles have weight 1. Let S = ∅.
2. Find the maximum convex polygon M of polygon T using the algorithm from

Sect. 4, and add M to the solution S. Decrease the weight of all second-order
basic triangles that are contained in M to 0.1

3. Repeat step 2 until there are no second-order basic units with weight 1 left.
Return S.

To obtain a performance guarantee for this algorithm, consider the Minimum
Set Cover instance I, which has all second-order basic triangles as elements
and where the second-order basic triangles with weight 1 of each convex polygon
in T , which only contains vertices from V 1

T , form a set in I. The greedy heuristic
for Minimum Set Cover achieves an approximation ratio of 1 + ln n′, where
n′ is the number of elements in I [10] and it works in exactly the same way as
our algorithm. However, we do not have to (and could not afford to) compute
all the sets of the Minimum Set Cover instance I (which would be a number
exponential in n′): It suffices to always compute a set, which contains a maximum
number of elements not yet covered by the solution thus far. This is achieved by
reducing the weights of the second-order basic triangles already in the solution
to 0; i.e. a convex polygon with maximum weight is such a set.

Note that n′ = O(n16). Therefore, our algorithm achieves an approximation
ratio of O(log n) for Restricted Minimum Convex Cover on input polygon
T . Because of Theorem 1, we know that the solution found for Restricted
Minimum Convex Cover is also a solution for the unrestricted Minimum
Convex Cover that is at most a factor of O(log n) off the optimum solution.

As for the running time of this algorithm, observe that the algorithm adds
to the solution in each round a convex polygon with non-zero weight. Therefore,
there can be at most O(n16) rounds, which yields a total running time of O(n44).
This completes the proof of our main theorem:

Theorem 2. Minimum Convex Cover for input polygons with or without
holes can be approximated by a polynomial time algorithm with an approximation
ratio of O(log n), where n is the number of polygon vertices.

6 APX-Hardness of Minimum Convex Cover

The upper bound of O(log n) on the approximation ratio for Minimum Convex
Cover is not tight: We will now prove that there is a constant lower bound
on the approximation ratio, and hence a gap remains. More precisely, we prove
1 Note that by the definition of second-order basic triangles, a second-order basic

triangle is either completely contained in M or completely outside M .
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Minimum Convex Cover to be APX-hard. Our proof of the APX-hardness
of Minimum Convex Cover for input polygons with or without holes uses
the construction that is used to prove the NP -hardness of this problem for
input polygons without holes2 [3]. However, we reduce the problem Maximum
5-Occurrence-3-Sat rather than SAT (as done in the original reduction [3])
to Minimum Convex Cover, and we design the reduction to be gap-preserving
[1]. Maximum 5-Occurrence-3-Sat is the variant of SAT, where each variable
may appear at most 5 times in clauses and each clause contains at most 3 literals.
Maximum 5-Occurrence-3-Sat is APX-complete [1].

Theorem 3. Let I be an instance of Maximum 5-Occurrence-3-Sat con-
sisting of n variables, m clauses with a total of l literals, and let I ′ be the cor-
responding instance of Minimum Convex Cover. Let OPT be the maximum
number of satisfied clauses of I by any assignment of the variables. Let OPT ′

be the minimum number of convex polygons needed to cover the polygon of I ′.
Then:

OPT = m =⇒ OPT ′ = 5l + n + 1
OPT ≤ (1 − 15ε)m =⇒ OPT ′ ≥ 5l + n + 1 + εn

Proof. Theorem 3 is proved by showing how to transform the convex polygons
of a solution of the Minimum Convex Cover I ′ in such a way that their total
number does not increase and in such a way that a truth assignment of the
variables can be “inferred” from the convex polygons that satisfies the desired
number of clauses. The proof employs concepts similar to those used in [6]; we
do not include details, due to space limitation.

In the promise problem of Maximum 5-Occurrence-3-Sat as described
above, we are promised that either all clauses are satisfiable or at most a fraction
of 1 − 15ε of the clauses is satisfiable, and we are to find out, which of the
two possibilities is true. This problem is NP -hard for small enough values of
ε > 0 [1]. Therefore, Theorem 3 implies that the promise problem for Minimum
Convex Cover, where we are promised that the minimum solution contains
either 5l+n+1 convex polygons or 5l+n+1+ εn convex polygons, is NP -hard
as well, for small enough values of ε > 0. Therefore, Minimum Convex Cover
cannot be approximated with a ratio of: 5l+n+1+εn

5l+n+1 ≥ 1 + εn
25n+n+1 ≥ 1 + ε

27 ,
where we have used that l ≤ 5n and n ≥ 1. This establishes the following:

Theorem 4. Minimum Convex Cover on input polygons with or without
holes is APX-hard.

7 Conclusion

We have proposed a polynomial time approximation algorithm for Minimum
Convex Cover that achieves an approximation ratio that is logarithmic in the
2 APX-hardness for Minimum Convex Cover for input polygons without holes im-

plies APX-hardness for the same problem for input polygons with holes.
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number of vertices of the input polygon. This has been achieved by showing that
there is a discretized version of the problem using no more than three times the
number of cover polygons. The discretization may shed some light on the long-
standing open question of whether the decision version of the Minimum Convex
Cover problem is in NP [15]. We know now that convex polygons of optimum
solutions only contain a polynomial number of vertices and that a considerable
fraction of these vertices are actually vertices from the input polygon. Apart from
the discretization, our algorithm applies a Minimum Set Cover approximation
algorithm to a Minimum Set Cover instance with an exponential number of
sets that are represented only implicitly, through the geometry. We propose an
algorithm that picks a best of the implicitly represented sets with a dynamic
programming approach, and hence runs in polynomial time. This technique may
prove to be of interest for other problems as well. Moreover, by showing APX-
hardness, we have eliminated the possibility of the existence of a polynomial-time
approximation scheme for this problem. However, polynomial time algorithms
could still achieve constant approximation ratios. Whether our algorithm is the
best asymptotically possible, is therefore an open problem. Furthermore, our
algorithm has a rather excessive running time of O(n44), and it is by no means
clear whether this can be improved substantially.
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